First Author | Larsson M | Year | 2011 |
Journal | J Histochem Cytochem | Volume | 59 |
Issue | 9 | Pages | 807-12 |
PubMed ID | 21606201 | Mgi Jnum | J:181077 |
Mgi Id | MGI:5308713 | Doi | 10.1369/0022155411411713 |
Citation | Larsson M, et al. (2011) The sodium-dependent inorganic phosphate transporter SLC34A1 (NaPi-IIa) is not localized in the mouse brain: a case of tissue-specific antigenic cross-reactivity. J Histochem Cytochem 59(9):807-12 |
abstractText | The sodium-dependent inorganic phosphate transporter NaPi-IIa is expressed in the kidney. Here, the authors used a polyclonal antiserum raised against NaPi-IIa- and NaPi-IIa-deficient mice to characterize its expression in nervous tissue. Western blots showed that a NaPi-IIa immunoreactive band (~90 kDa) was only present in wild-type kidney membranes and not in kidney knockout or wild-type brain membranes. In the water-soluble fraction of wild-type and knockout brains, another band (~50 kDa) was observed; this band was not detected in the kidney. Light and electron microscopic immunohistochemistry using the NaPi-IIa antibodies showed immunolabeling of kidney tubules in wild-type but not knockout mice. In the brain, labeling of presynaptic nerve terminals was present also in NaPi-IIa-deficient mice. This labeling pattern was also produced by the NaPi-IIa preimmune serum. The authors conclude that the polyclonal antiserum is specific toward NaPi-IIa in the kidney, but in the brain, immunolabeling is caused by a cross-reaction of the antiserum with an unknown cytosolic protein that is not present in the kidney. This tissue-specific cross-reactivity highlights a potential pitfall when validating antibody specificity using knockout mouse-derived tissue other than the specific tissue of interest and underlines the utility of specificity testing using preimmune sera. |