|  Help  |  About  |  Contact Us

Publication : A dominantly negative mutation in cardiac troponin I at the interface with troponin T causes early remodeling in ventricular cardiomyocytes.

First Author  Wei H Year  2014
Journal  Am J Physiol Cell Physiol Volume  307
Issue  4 Pages  C338-48
PubMed ID  24898585 Mgi Jnum  J:221709
Mgi Id  MGI:5641402 Doi  10.1152/ajpcell.00053.2014
Citation  Wei H, et al. (2014) A dominantly negative mutation in cardiac troponin I at the interface with troponin T causes early remodeling in ventricular cardiomyocytes. Am J Physiol Cell Physiol 307(4):C338-48
abstractText  We previously reported a point mutation substituting Cys for Arg(111) in the highly conserved troponin T (TnT)-contacting helix of cardiac troponin I (cTnI) in wild turkey hearts (Biesiadecki et al. J Biol Chem 279: 13825-13832, 2004). This dominantly negative TnI-TnT interface mutation decreases the binding affinity of cTnI for TnT, impairs diastolic function, and blunts the beta-adrenergic response of cardiac muscle (Wei et al. J Biol Chem 285: 27806-27816, 2010). Here we further investigate cellular phenotypes of transgenic mouse cardiomyocytes expressing the equivalent mutation cTnI-K118C. Functional studies were performed on single adult cardiomyocytes after recovery in short-term culture from isolation stress. The amplitude of contraction and the velocities of shortening and relengthening were lower in cTnI-K118C cardiomyocytes than wild-type controls. The intracellular Ca(2+) transient was slower in cTnI-K118C cardiomyocytes than wild-type cells. cTnI-K118C cardiomyocytes also showed a weaker beta-adrenergic response. The resting length of cTnI-K118C cardiomyocytes was significantly greater than that of age-matched wild-type cells, with no difference in cell width. The resting sarcomere was not longer, but slightly shorter, in cTnI-K118C cardiomyocytes than wild-type cells, indicating longitudinal addition of sarcomeres. More tri- and quadrinuclei cardiomyocytes were found in TnI-K118C than wild-type hearts, suggesting increased nuclear divisions. Whole-genome mRNA array and Western blots detected an increased expression of leukemia inhibitory factor receptor-beta in the hearts of 2-mo-old cTnI-K118C mice, suggesting a signaling pathway responsible for the potent effect of cTnI-K118C mutation on early remodeling in cardiomyocytes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

4 Bio Entities

Trail: Publication

0 Expression