|  Help  |  About  |  Contact Us

Publication : Layers of inhibitory networks shape receptive field properties of AII amacrine cells.

First Author  Nath A Year  2023
Journal  Cell Rep Volume  42
Issue  11 Pages  113390
PubMed ID  37930888 Mgi Jnum  J:348586
Mgi Id  MGI:7561381 Doi  10.1016/j.celrep.2023.113390
Citation  Nath A, et al. (2023) Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep 42(11):113390
abstractText  In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

12 Bio Entities

Trail: Publication

0 Expression