First Author | Nag S | Year | 2009 |
Journal | Behav Brain Res | Volume | 197 |
Issue | 2 | Pages | 457-61 |
PubMed ID | 18957308 | Mgi Jnum | J:144063 |
Mgi Id | MGI:3829842 | Doi | 10.1016/j.bbr.2008.09.036 |
Citation | Nag S, et al. (2009) Knockout of spinophilin, an endogenous antagonist of arrestin-dependent alpha2-adrenoceptor functions, enhances receptor-mediated antinociception yet does not eliminate sex-related differences. Behav Brain Res 197(2):457-61 |
abstractText | We have previously shown gonadal steroid-dependent, gender specific modulation of nociception by alpha(2)-adrenoceptors. Agonist activation of the receptor enhances its association with spinophilin that antagonizes arrestin functions both by diminishing receptor phosphorylation by G-protein-coupled receptor kinase 2 (GRK2) and by competing for receptor interactions with arrestin. Since spinophilin is highly enriched in dendritic spines, we investigated whether alpha(2)-adrenoceptor-induced antinociception as well as sex-related differences are modified in spinophilin knockout mice. We evaluated alpha(2)-adrenoceptor antinociception in a heat-evoked tail flick test in spinophilin wild type (Sp(+/+)) and knockout (Sp(-/-)) mice. Baseline tail flick latencies (TFLs) did not change between any groups. Interestingly, the alpha(2)-adrenoceptor agonist, clonidine, increased TFL in male and diestrous (low estrogen) Sp(-/-) as well as Sp(+/+) mice; in fact, this increase in TFL was significantly higher in Sp(-/-) male and diestrous groups than in their Sp(+/+) counterparts. This unexpected finding is consistent with enhanced alpha(2)-adrenoceptor-mediated sedation observed previously in Sp(-/-) mice, presumably due to accelerated endocytosis of desensitized receptors and recycling of refreshed receptors when arrestin is not competed for by spinophilin in Sp(-/-) mice. Despite modulation of alpha(2)-adrenoceptor effects in Sp(-/-) mice, sex-related differences were retained; thus, clonidine was ineffective in proestrous females (highest estrogen levels), in both Sp(-/-) and Sp(+/+) mice, reaffirming that estrogen suppresses alpha(2)-adrenoceptor-evoked antinociception. These findings show that elimination of spinophilin enhances alpha(2)-adrenoceptor-evoked antinociception in estrogen-deprived physiological settings, suggesting a role for spinophilin to suppress these effects, and yet this enhanced response cannot overcome the absence of antinociception with elevated estrogen levels. |