|  Help  |  About  |  Contact Us

Publication : Genetic interactions among Idd3, Idd5.1, Idd5.2, and Idd5.3 protective loci in the nonobese diabetic mouse model of type 1 diabetes.

First Author  Lin X Year  2013
Journal  J Immunol Volume  190
Issue  7 Pages  3109-20
PubMed ID  23427248 Mgi Jnum  J:194526
Mgi Id  MGI:5474129 Doi  10.4049/jimmunol.1203422
Citation  Lin X, et al. (2013) Genetic Interactions among Idd3, Idd5.1, Idd5.2, and Idd5.3 Protective Loci in the Nonobese Diabetic Mouse Model of Type 1 Diabetes. J Immunol 190(7):3109-20
abstractText  In the NOD mouse model of type 1 diabetes, insulin-dependent diabetes (Idd) loci control the development of insulitis and diabetes. Independently, protective alleles of Idd3/Il2 or Idd5 are able to partially protect congenic NOD mice from insulitis and diabetes, and to partially tolerize islet-specific CD8(+) T cells. However, when the two regions are combined, mice are almost completely protected, strongly suggesting the existence of genetic interactions between the two loci. Idd5 contains at least three protective subregions/causative gene candidates, Idd5.1/Ctla4, Idd5.2/Slc11a1, and Idd5.3/Acadl, yet it is unknown which of them interacts with Idd3/Il2. Through the use of a series of novel congenic strains containing the Idd3/Il2 region and different combinations of Idd5 subregion(s), we defined these genetic interactions. The combination of Idd3/Il2 and Idd5.3/Acadl was able to provide nearly complete protection from type 1 diabetes, but all three Idd5 subregions were required to protect from insulitis and fully restore self-tolerance. By backcrossing a Slc11a1 knockout allele onto the NOD genetic background, we have demonstrated that Slc11a1 is responsible for the diabetes protection resulting from Idd5.2. We also used Slc11a1 knockout-SCID and Idd5.2-SCID mice to show that both loss-of-function alleles provide protection from insulitis when expressed on the SCID host alone. These results lend further support to the hypothesis that Slc11a1 is Idd5.2.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression