|  Help  |  About  |  Contact Us

Publication : Role of zinc metallothionein-3 (ZnMt3) in epidermal growth factor (EGF)-induced c-Abl protein activation and actin polymerization in cultured astrocytes.

First Author  Lee SJ Year  2011
Journal  J Biol Chem Volume  286
Issue  47 Pages  40847-56
PubMed ID  21900236 Mgi Jnum  J:178169
Mgi Id  MGI:5297639 Doi  10.1074/jbc.M111.245993
Citation  Lee SJ, et al. (2011) Role of Zinc Metallothionein-3 (ZnMt3) in Epidermal Growth Factor (EGF)-induced c-Abl Protein Activation and Actin Polymerization in Cultured Astrocytes. J Biol Chem 286(47):40847-56
abstractText  Recent evidence indicates that zinc plays a major role in neurochemistry. Of the many zinc-binding proteins, metallothionein-3 (Mt3) is regarded as one of the major regulators of cellular zinc in the brain. However, biological functions of Mt3 are not yet well characterized. Recently, we found that lysosomal dysfunction in metallothionein-3 (Mt3)-null astrocytes involves down-regulation of c-Abl. In this study, we investigated the role of Mt3 in c-Abl activation and actin polymerization in cultured astrocytes following treatment with epidermal growth factor (EGF). Compared with wild-type (WT) astrocytes, Mt3-null cells exhibited a substantial reduction in the activation of c-Abl upon treatment with EGF. Consistent with previous studies, activation of c-Abl by EGF induced dissociation of c-Abl from F-actin. Mt3 added to astrocytic cell lysates bound F-actin, augmented F-actin polymerization, and promoted the dissociation of c-Abl from F-actin, suggesting a possible role for Mt3 in this process. Conversely, Mt3-deficient astrocytes showed significantly reduced dissociation of c-Abl from F-actin following EGF treatment. Experiments using various peptide fragments of Mt3 showed that a fragment containing the N-terminal TCPCP motif (peptide 1) is sufficient for this effect. Removal of zinc from Mt3 or pep1 with tetrakis(2-pyridylmethyl)ethylenediamine abrogated the effect of Mt3 on the association of c-Abl and F-actin, indicating that zinc binding is necessary for this action. These results suggest that ZnMt3 in cultured astrocytes may be a normal component of c-Abl activation in EGF receptor signaling. Hence, modulation of Mt3 levels or distribution may prove to be a useful strategy for controlling cytoskeletal mobilization following EGF stimulation in brain cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Authors

4 Bio Entities

Trail: Publication

0 Expression