|  Help  |  About  |  Contact Us

Publication : Stimulation of astrocyte Na+/H+ exchange activity in response to in vitro ischemia depends in part on activation of ERK1/2.

First Author  Kintner DB Year  2005
Journal  Am J Physiol Cell Physiol Volume  289
Issue  4 Pages  C934-45
PubMed ID  15901600 Mgi Jnum  J:115438
Mgi Id  MGI:3691717 Doi  10.1152/ajpcell.00092.2005
Citation  Kintner DB, et al. (2005) Stimulation of astrocyte Na+/H+ exchange activity in response to in vitro ischemia depends in part on activation of ERK1/2. Am J Physiol Cell Physiol 289(4):C934-45
abstractText  We recently reported that Na+/H+ exchanger isoform 1 (NHE1) activity in astrocytes is stimulated and leads to intracellular Na+ loading after oxygen and glucose deprivation (OGD). However, the underlying mechanisms for this stimulation of NHE1 activity and its impact on astrocyte function are unknown. In the present study, we investigated the role of the ERK1/2 pathway in NHE1 activation. NHE1 activity was elevated by approximately 75% in NHE1+/+ astrocytes after 2-h OGD and 1-h reoxygenation (REOX). The OGD/REOX-mediated stimulation of NHE1 was partially blocked by 30 microM PD-98059. Increased expression of phosphorylated ERK1/2 was detected in NHE1+/+ astrocytes after OGD/REOX. Moreover, stimulation of NHE1 activity disrupted not only Na+ but also Ca2+ homeostasis via reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX led to a 103% increase in intracellular Ca2+ concentration ([Ca2+]i) in NHE1+/+ astrocytes in the presence of thapsigargin. Inhibition of NHE1 activity with the NHE1 inhibitor HOE-642 decreased OGD/REOX-induced elevation of [Ca2+]i by 73%. To further investigate changes of Ca2+ signaling, bradykinin-mediated Ca2+ release was evaluated. Bradykinin-mediated intracellular Ca2+ transient in NHE1+/+ astrocytes was increased by approximately 84% after OGD/REOX. However, in NHE1-/- astrocytes or NHE1+/+ astrocytes treated with HOE-642, the bradykinin-induced Ca2+ release was increased by only approximately 34%. Inhibition of the reverse mode of Na+/Ca2+ exchange abolished OGD/REOX-mediated Ca2+ rise. Together, our data suggest that ERK1/2 is involved in activation of NHE1 in astrocytes after in vitro ischemia. NHE1-mediated Na+ accumulation subsequently alters Ca2+ homeostasis via Na+/Ca2+ exchange.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression