|  Help  |  About  |  Contact Us

Publication : Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas.

First Author  Al Saati T Year  2013
Journal  Am J Pathol Volume  182
Issue  6 Pages  1996-2004
PubMed ID  23578383 Mgi Jnum  J:198521
Mgi Id  MGI:5496966 Doi  10.1016/j.ajpath.2013.02.034
Citation  Al Saati T, et al. (2013) Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas. Am J Pathol 182(6):1996-2004
abstractText  Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model. We generated Kras-INP1KO mice using LSL-Kras(G12D/+);Pdx1-Cre(+/-) mice (Kras mice) and TP53INP1(-/-) mice. Analysis of pancreases during ageing shows that in the presence of activated Kras, TP53INP1 loss of expression accelerated PanIN formation and increased pancreatic injury and the number of high-grade lesions as compared with what occurs in Kras mice. Moreover, cystic lesions resembling intraductal papillary mucinous neoplasm (IPMN) were observed as early as 2 months of age. Remarkably, TP53INP1 is down-regulated in human IPMN. Activation of the small GTPase Rac1 shows that more oxidative stress is generated in Kras-INP1KO than in Kras mice pancreas despite elevated levels of the Nrf2 antioxidant regulator. We firmly establish the link between Kras-INP1KO pancreatic phenotype and oxidative stress with rescue of the phenotype by the antioxidant action of N-acetylcysteine. Our data provide in vivo functional demonstration that TP53INP1 deficiency accelerates progression of pancreatic cancer, underlining its role in the occurrence of IPMN and highlighting the importance of TP53INP1 in the control of oxidative status during development of pancreatic cancer.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression