|  Help  |  About  |  Contact Us

Publication : Endoplasmic reticulum stress-unfolding protein response-apoptosis cascade causes chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model.

First Author  Liang G Year  2014
Journal  PLoS One Volume  9
Issue  1 Pages  e86894
PubMed ID  24475193 Mgi Jnum  J:212712
Mgi Id  MGI:5582012 Doi  10.1371/journal.pone.0086894
Citation  Liang G, et al. (2014) Endoplasmic reticulum stress-unfolding protein response-apoptosis cascade causes chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model. PLoS One 9(1):e86894
abstractText  The collagen type II alpha 1 (COL2A1) mutation causes severe skeletal malformations, but the pathogenic mechanisms of how this occurs are unclear. To understand how this may happen, a col2a1 p.Gly1170Ser mutated mouse model was constructed and in homozygotes, the chondrodysplasia phenotype was observed. Misfolded procollagen was largely synthesized and retained in dilated endoplasmic reticulum and the endoplasmic reticulum stress (ERS)-unfolded protein response (UPR)-apoptosis cascade was activated. Apoptosis occurred prior to hypertrophy, prevented the formation of a hypertrophic zone, disrupted normal chondrogenic signaling pathways, and eventually caused chondrodysplasia. Heterozygotes had normal phenotypes and endoplasmic reticulum stress intensity was limited with no abnormal apoptosis detected. Our results suggest that earlier chondrocyte death was related to the ERS-UPR-apoptosis cascade and that this was the chief cause of chondrodysplaia. The col2a1 p.Gly1170Ser mutated mouse model offered a novel connection between misfolded collagen and skeletal malformation. Further investigation of this mouse mutant model can help us understand mechanisms of type II collagenopathies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression