|  Help  |  About  |  Contact Us

Publication : Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo.

First Author  Jin RC Year  2011
Journal  Circulation Volume  123
Issue  18 Pages  1963-73
PubMed ID  21518981 Mgi Jnum  J:183744
Mgi Id  MGI:5319161 Doi  10.1161/CIRCULATIONAHA.110.000034
Citation  Jin RC, et al. (2011) Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo. Circulation 123(18):1963-73
abstractText  BACKGROUND: Glutathione peroxidase-3 (GPx-3) is a selenocysteine-containing plasma protein that scavenges reactive oxygen species in the extracellular compartment. A deficiency of this enzyme has been associated with platelet-dependent thrombosis, and a promoter haplotype with reduced function has been associated with stroke risk. METHODS AND RESULTS: We recently developed a genetic mouse model to assess platelet function and thrombosis in the setting of GPx-3 deficiency. The GPx-3((-/-)) mice showed an attenuated bleeding time and an enhanced aggregation response to the agonist ADP compared with wild-type mice. GPx-3((-/-)) mice displayed increased plasma levels of soluble P-selectin and decreased plasma cyclic cGMP compared with wild-type mice. ADP infusion-induced platelet aggregation in the pulmonary vasculature produced a more robust platelet activation response in the GPx-3((-/-)) than wild-type mice; histological sections from the pulmonary vasculature of GPx-3((-/-)) compared with wild-type mice showed increased platelet-rich thrombi and a higher percentage of occluded vessels. Cremaster muscle preparations revealed endothelial dysfunction in the GPx-3((-/-)) compared with wild-type mice. With a no-flow ischemia-reperfusion stroke model, GPx-3((-/-)) mice had significantly larger cerebral infarctions compared with wild-type mice and platelet-dependent strokes. To assess the neuroprotective role of antioxidants in this model, we found that manganese(III) meso-tetrakis(4-benzoic acid)porphyrin treatment reduced stroke size in GPx-3((-/-)) mice compared with vehicle-treated controls. CONCLUSIONS: These findings demonstrate that GPx-3 deficiency results in a prothrombotic state and vascular dysfunction that promotes platelet-dependent arterial thrombosis. These data illustrate the importance of this plasma antioxidant enzyme in regulating platelet activity, endothelial function, platelet-dependent thrombosis, and vascular thrombotic propensity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression