|  Help  |  About  |  Contact Us

Publication : Osteoblasts support megakaryopoiesis through production of interleukin-9.

First Author  Xiao M Year  2017
Journal  Blood Volume  129
Issue  24 Pages  3196-3209
PubMed ID  28450306 Mgi Jnum  J:243439
Mgi Id  MGI:5908492 Doi  10.1182/blood-2016-11-749838
Citation  Xiao M, et al. (2017) Osteoblasts support megakaryopoiesis through production of interleukin-9. Blood 129(24):3196-3209
abstractText  Severe thrombocytopenia is a significant challenge in patients undergoing myelosuppressive chemotherapy for malignancies. Understanding the biology of platelet-producing megakaryocytes development in the bone marrow microenvironment may facilitate the development of novel therapies to stimulate platelet production and prevent thrombocytopenia. We report here that osteoblasts supported megakaryopoiesis by secreting interleukin-9 (IL-9), which stimulated IL-9 receptor (IL-9R)/Stat3 signaling in promoting megakaryopoiesis. IL-9 production in osteoblasts was negatively regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signaling in a NF-kappaB-dependent manner. Constitutive activation of mTORC1 inhibited IL-9 production in osteoblasts and suppressed megakaryocytic cells expansion, whereas mTORC1 inactivation increased IL-9 production and enhanced megakaryocyte and platelet numbers in mice. In mouse models, we showed that IL-9 administration stimulated megakaryopoiesis, whereas neutralizing endogenous IL-9 or IL-9R depletion inhibited the process. Importantly, we found that low doses of IL-9 efficiently prevented chemotherapy-induced thrombocytopenia (CIT) and accelerated platelet recovery after CIT. These data indicate that IL-9 is an essential regulator of megakaryopoiesis and a promising therapeutic agent for treatment of thrombocytopenia such as CIT.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression