First Author | Li J | Year | 2013 |
Journal | J Immunol | Volume | 191 |
Issue | 1 | Pages | 200-7 |
PubMed ID | 23729441 | Mgi Jnum | J:205363 |
Mgi Id | MGI:5544682 | Doi | 10.4049/jimmunol.1203485 |
Citation | Li J, et al. (2013) Phosphatidylinositol 3-kinase-independent signaling pathways contribute to ICOS-mediated T cell costimulation in acute graft-versus-host disease in mice. J Immunol 191(1):200-7 |
abstractText | We and others have previously shown that ICOS plays an important role in inducing acute graft-versus-host disease (GVHD) in murine models of allogeneic bone marrow transplantation. ICOS potentiates TCR-mediated PI3K activation and intracellular calcium mobilization. However, ICOS signal transduction pathways involved in GVHD remain unknown. In this study, we examined the contribution of ICOS-PI3K signaling in the pathogenic potential of T cells using a knock-in mouse strain, ICOS-YF, which selectively lost the ability to activate PI3K. We found that when total T cells were used as alloreactive T cells, ICOS-YF T cells caused less severe GVHD compared with ICOS wild-type T cells, but they induced much more aggressive disease than ICOS knockout T cells. This intermediate level of pathogenic capacity of ICOS-YF T cells was correlated with similar levels of IFN-gamma-producing CD8 T cells that developed in the recipients of ICOS-WT or ICOS-YF T cells. We further evaluated the role of ICOS-PI3K signaling in CD4 versus CD8 T cell compartment using GVHD models that are exclusively driven by CD4 or CD8 T cells. Remarkably, ICOS-YF CD8 T cells caused disease similar to ICOS wild-type CD8 T cells, whereas ICOS-YF CD4 T cells behaved very similarly to their ICOS knockout counterparts. Consistent with their in vivo pathogenic potential, CD8 T cells responded to ICOS ligation in vitro by PI3K-independent calcium flux, T cell activation, and proliferation. Thus, in acute GVHD in mice, CD4 T cells heavily rely on ICOS-PI3K signaling pathways; in contrast, CD8 T cells can use PI3K-independent ICOS signaling pathways, possibly through calcium. |