|  Help  |  About  |  Contact Us

Publication : Magnetic resonance imaging of disease progression and resolution in a transgenic mouse model of pulmonary fibrosis.

First Author  Cleveland ZI Year  2017
Journal  Am J Physiol Lung Cell Mol Physiol Volume  312
Issue  4 Pages  L488-L499
PubMed ID  28130263 Mgi Jnum  J:240947
Mgi Id  MGI:5896866 Doi  10.1152/ajplung.00458.2016
Citation  Cleveland ZI, et al. (2017) Magnetic resonance imaging of disease progression and resolution in a transgenic mouse model of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 312(4):L488-L499
abstractText  Pulmonary fibrosis contributes to morbidity and mortality in a range of diseases, and there are no approved therapies for reversing its progression. To understand the mechanisms underlying pulmonary fibrosis and assess potential therapies, mouse models are central to basic and translational research. Unfortunately, metrics commonly used to assess murine pulmonary fibrosis require animals to be grouped and euthanized, increasing experimental difficulty and cost. We examined the ability of magnetic resonance imaging (MRI) to noninvasively assess lung fibrosis progression and resolution in a doxycycline (Dox) regulatable, transgenic mouse model that overexpresses transforming growth factor-alpha (TGF-alpha) under control of a lung-epithelial-specific promoter. During 7 wk of Dox treatment, fibrotic lesions were readily observed as high-signal tissue. Mean weighted signal and percent signal volume were found to be the most robust MRI-derived measures of fibrosis, and these metrics correlated significantly with pleural thickness, histology scores, and hydroxyproline content (R = 0.75-0.89). When applied longitudinally, percent high signal volume increased by 1.5% wk-1 (P < 0.001) and mean weighted signal increased at a rate of 0.0065 wk-1 (P = 0.0062). Following Dox treatment, lesions partially resolved, with percent high signal volume decreasing by -3.2% wk-1 (P = 0.0034) and weighted mean signal decreasing at -0.015 wk-1 (P = 0.0028). Additionally, longitudinal MRI revealed dynamic remodeling in a subset of lesions, a previously unobserved behavior in this model. These results demonstrate MRI can noninvasively assess experimental lung fibrosis progression and resolution and provide unique insights into its pathobiology.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression