|  Help  |  About  |  Contact Us

Publication : Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam.

First Author  Boido D Year  2010
Journal  Neuroscience Volume  171
Issue  1 Pages  268-83
PubMed ID  20804820 Mgi Jnum  J:169725
Mgi Id  MGI:4941699 Doi  10.1016/j.neuroscience.2010.08.046
Citation  Boido D, et al. (2010) Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 171(1):268-83
abstractText  Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. Both fast and slow interictal (I-IC) and ictal (IC) events were observed in both genotypes. The incidence of fast I-IC events was higher in presymptomatic TKO slices, while frequency and latency of I-IC events were similar in both genotypes. The major age and genotype effects were observed in IC activity, that was much more pronounced in 3-weeks-old TKO and persisted with age, while it disappeared from 1-year-old TWT slices. LEV virtually suppressed fast I-IC and IC discharges from 3-weeks-old TWT slices, while it only increased the latency of fast I-IC and IC activity in TKO slices. Analysis of I-IC events in patch-clamped CA1 pyramidal neurons revealed that LEV increased the inhibitory/excitatory ratio of I-IC activity in both genotypes. The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV receptor SV2A.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression