|  Help  |  About  |  Contact Us

Publication : Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly.

First Author  Sampath SC Year  2007
Journal  Mol Cell Volume  27
Issue  4 Pages  596-608
PubMed ID  17707231 Mgi Jnum  J:155931
Mgi Id  MGI:4418258 Doi  10.1016/j.molcel.2007.06.026
Citation  Sampath SC, et al. (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27(4):596-608
abstractText  Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or 'histone mimics' - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression