|  Help  |  About  |  Contact Us

Publication : Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons.

First Author  Kim O Year  2024
Journal  PLoS Biol Volume  22
Issue  11 Pages  e3002879
PubMed ID  39556620 Mgi Jnum  J:359201
Mgi Id  MGI:7782149 Doi  10.1371/journal.pbio.3002879
Citation  Kim O, et al. (2024) Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons. PLoS Biol 22(11):e3002879
abstractText  It is widely believed that information storage in neuronal circuits involves nanoscopic structural changes at synapses, resulting in the formation of synaptic engrams. However, direct evidence for this hypothesis is lacking. To test this conjecture, we combined chemical potentiation, functional analysis by paired pre-postsynaptic recordings, and structural analysis by electron microscopy (EM) and freeze-fracture replica labeling (FRL) at the rodent hippocampal mossy fiber synapse, a key synapse in the trisynaptic circuit of the hippocampus. Biophysical analysis of synaptic transmission revealed that forskolin-induced chemical potentiation increased the readily releasable vesicle pool size and vesicular release probability by 146% and 49%, respectively. Structural analysis of mossy fiber synapses by EM and FRL demonstrated an increase in the number of vesicles close to the plasma membrane and the number of clusters of the priming protein Munc13-1, indicating an increase in the number of both docked and primed vesicles. Furthermore, FRL analysis revealed a significant reduction of the distance between Munc13-1 and CaV2.1 Ca2+ channels, suggesting reconfiguration of the channel-vesicle coupling nanotopography. Our results indicate that presynaptic plasticity is associated with structural reorganization of active zones. We propose that changes in potential nanoscopic organization at synaptic vesicle release sites may be correlates of learning and memory at a plastic central synapse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression