|  Help  |  About  |  Contact Us

Publication : Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair.

First Author  Kumar V Year  2017
Journal  Nucleic Acids Res Volume  45
Issue  18 Pages  10595-10613
PubMed ID  28977635 Mgi Jnum  J:246356
Mgi Id  MGI:5918094 Doi  10.1093/nar/gkx705
Citation  Kumar V, et al. (2017) Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res 45(18):10595-10613
abstractText  The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE-/-), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression