|  Help  |  About  |  Contact Us

Publication : <i>Ager</i> Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice.

First Author  López-Díez R Year  2017
Journal  Arterioscler Thromb Vasc Biol Volume  37
Issue  8 Pages  1536-1547
PubMed ID  28642238 Mgi Jnum  J:269252
Mgi Id  MGI:6272175 Doi  10.1161/ATVBAHA.117.309714
Citation  Lopez-Diez R, et al. (2017) Ager Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice. Arterioscler Thromb Vasc Biol 37(8):1536-1547
abstractText  OBJECTIVE: Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms. APPROACH AND RESULTS: Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle. In diabetic wild-type mice, femoral artery ligation attenuated angiogenesis and impaired blood flow recovery, in parallel with reduced macrophage content in ischemic muscle and suppression of early inflammatory gene expression, including Ccl2 (chemokine [C-C motif] ligand-2) and Egr1 (early growth response gene-1) versus nondiabetic mice. Deletion of Ager (gene encoding RAGE) or transgenic expression of Glo1 (reduces AGEs) restored adaptive inflammation, angiogenesis, and blood flow recovery in diabetic mice. In diabetes mellitus, deletion of Ager increased circulating Ly6C(hi) monocytes and augmented macrophage infiltration into ischemic muscle tissue after femoral artery ligation. In vitro, macrophages grown in high glucose display inflammation that is skewed to expression of tissue damage versus tissue repair gene expression. Further, macrophages grown in high versus low glucose demonstrate blunted macrophage-endothelial cell interactions. In both settings, these adverse effects of high glucose were reversed by Ager deletion in macrophages. CONCLUSIONS: These findings indicate that RAGE attenuates adaptive inflammation in hindlimb ischemia; underscore microenvironment-specific functions for RAGE in inflammation in tissue repair versus damage; and illustrate that AGE/RAGE antagonism may fill a critical gap in diabetic peripheral vascular disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression