First Author | Misra A | Year | 2010 |
Journal | Exp Cell Res | Volume | 316 |
Issue | 17 | Pages | 2810-24 |
PubMed ID | 20678498 | Mgi Jnum | J:165034 |
Mgi Id | MGI:4836103 | Doi | 10.1016/j.yexcr.2010.07.015 |
Citation | Misra A, et al. (2010) The mammalian verprolin, WIRE induces filopodia independent of N-WASP through IRSp53. Exp Cell Res 316(17):2810-24 |
abstractText | The mammalian verprolin family of proteins, WIP (WASP Interacting Protein), CR16 (Corticoid Regulated) and WIRE (WIp-RElated) regulate the actin cytoskeleton through WASP/N-WASP (Wiskott Aldrich Syndrome Protein and Neural-WASP). In order to characterize the WASP/N-WASP-independent function of WIRE, we screened and identified IRSp53 (Insulin Receptor Substrate) as a WIRE interacting protein. Expression of IRSp53 with WIRE in N-WASP(-/-) mouse fibroblast cells induced filopodia while co-expression of IRSp53 with WIP did not. The induction of filopodia is dependent on WIRE-IRSp53 interaction as mutation in the SH3 domain of IRSp53 abolished WIRE-IRSp53 interaction as well as the ability to induce filopodia. Similarly, the Verprolin (V)-domain of WIRE is critical for IRSp53-WIRE interaction and for filopodia formation. The interaction between WIRE and IRSp53 is regulated by Cdc42 as mutations which abolish Cdc42-IRSp53 interaction lead to loss of IRSp53-WIRE interaction as shown by pull down assay. The plasma membrane localization of IRSp53 is dependent on Cdc42 and WIRE. Expression of Cdc42(G12V) (active mutant) with WIRE-IRSp53 caused significant increase in the number of filopodia per cell. Thus our results show that Cdc42 regulates the activity of IRSp53 by regulating the IRSp53-WIRE interaction as well as localization of the complex to plasma membrane to generate filopodia. |