|  Help  |  About  |  Contact Us

Publication : Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

First Author  Vandorpe DH Year  2010
Journal  PLoS One Volume  5
Issue  1 Pages  e8732
PubMed ID  20090940 Mgi Jnum  J:296374
Mgi Id  MGI:6225164 Doi  10.1371/journal.pone.0008732
Citation  Vandorpe DH, et al. (2010) Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes. PLoS One 5(1):e8732
abstractText  BACKGROUND: Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca(2+)] ([Ca(2+)](i)) and subsequent activation of K(Ca) 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration. METHODOLOGY/PRINCIPAL FINDINGS: We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca(2+)- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 microM), dipyridamole (100 microM), DIDS (100 microM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca(2+)](i), in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca(2+)](i) in mouse sickle erythrocytes did not require KCa3.1 activity. CONCLUSIONS/SIGNIFICANCE: The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca(2+)-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca(2+) for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

Trail: Publication

0 Expression