|  Help  |  About  |  Contact Us

Publication : The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice.

First Author  Wang SP Year  2001
Journal  Obes Res Volume  9
Issue  2 Pages  119-28
PubMed ID  11316346 Mgi Jnum  J:82299
Mgi Id  MGI:2652012 Doi  10.1038/oby.2001.15
Citation  Wang SP, et al. (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9(2):119-28
abstractText  OBJECTIVE: To directly ascertain the physiological roles in adipocytes of hormone-sensitive lipase (HSL; E.C. 3.1.1.3), a multifunctional hydrolase that can mediate triacylglycerol cleavage in adipocytes. RESEARCH METHODS AND PROCEDURES: We performed constitutive gene targeting of the mouse HSL gene (Lipe), subsequently studied the adipose tissue phenotype clinically and histologically, and measured lipolysis in isolated adipocytes. RESULTS: Homozygous HSL-/- mice have no detectable HSL peptide or cholesteryl esterase activity in adipose tissue, and heterozygous mice have intermediate levels with respect to wild-type and deficient littermates. HSL-deficient mice have normal body weight but reduced abdominal fat mass compared with normal littermates. Histologically, both white and brown adipose tissues in HSL-/- mice show marked heterogeneity in cell size, with markedly enlarged adipocytes juxtaposed to cells of normal morphology. In isolated HSL-/- adipocytes, lipolysis is not significantly increased by beta3-adrenergic stimulation, but under basal conditions in the absence of added catecholamines, the lipolytic rate of isolated HSL-/- adipocytes is at least as high as that of cells from normal controls. Cold tolerance during a 48-hour period at 4 degrees C was similar in HSL-/- mice and controls. Overnight fasting was well-tolerated clinically by HSL-/- mice, but after fasting, liver triglyceride content was significantly lower in HSL-/- mice compared with wild-type controls. CONCLUSIONS: In isolated fat cells, the lipolytic rate after beta-adrenergic stimulation is mainly dependent on HSL. However, the observation of a normal rate of lipolysis in unstimulated HSL-/- adipocytes suggests that HSL-independent lipolytic pathway(s) exist in fat. Physiologically, HSL deficiency in mice has a modest effect under normal fed conditions and is compatible with normal maintenance of core body temperature during cold stress. However, the lipolytic response to overnight fasting is subnormal.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression