First Author | Rothaug M | Year | 2014 |
Journal | Proc Natl Acad Sci U S A | Volume | 111 |
Issue | 43 | Pages | 15573-8 |
PubMed ID | 25316793 | Mgi Jnum | J:216676 |
Mgi Id | MGI:5609206 | Doi | 10.1073/pnas.1405700111 |
Citation | Rothaug M, et al. (2014) LIMP-2 expression is critical for beta-glucocerebrosidase activity and alpha-synuclein clearance. Proc Natl Acad Sci U S A 111(43):15573-8 |
abstractText | Mutations within the lysosomal enzyme beta-glucocerebrosidase (GC) result in Gaucher disease and represent a major risk factor for developing Parkinson disease (PD). Loss of GC activity leads to accumulation of its substrate glucosylceramide and alpha-synuclein. Since lysosomal activity of GC is tightly linked to expression of its trafficking receptor, the lysosomal integral membrane protein type-2 (LIMP-2), we studied alpha-synuclein metabolism in LIMP-2-deficient mice. These mice showed an alpha-synuclein dosage-dependent phenotype, including severe neurological impairments and premature death. In LIMP-2-deficient brains a significant reduction in GC activity led to lipid storage, disturbed autophagic/lysosomal function, and alpha-synuclein accumulation mediating neurotoxicity of dopaminergic (DA) neurons, apoptotic cell death, and inflammation. Heterologous expression of LIMP-2 accelerated clearance of overexpressed alpha-synuclein, possibly through increasing lysosomal GC activity. In surviving DA neurons of human PD midbrain, LIMP-2 levels were increased, probably to compensate for lysosomal GC deficiency. Therefore, we suggest that manipulating LIMP-2 expression to increase lysosomal GC activity is a promising strategy for the treatment of synucleinopathies. |