First Author | Sakata Y | Year | 1998 |
Journal | Circulation | Volume | 97 |
Issue | 15 | Pages | 1488-95 |
PubMed ID | 9576430 | Mgi Jnum | J:128755 |
Mgi Id | MGI:3767941 | Doi | 10.1161/01.cir.97.15.1488 |
Citation | Sakata Y, et al. (1998) Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 97(15):1488-95 |
abstractText | BACKGROUND: Receptor-mediated activation of myocardial Gq signaling is postulated as a biochemical mechanism transducing pressure-overload hypertrophy. The specific effects of Gq activation on the functional and morphological adaptations to pressure overload are not known. METHODS AND RESULTS: To determine the effects of intrinsic myocyte G alpha q signaling on the left ventricular hypertrophic response to experimental pressure overload, transgenic mice overexpressing G alpha q specifically in the heart (G alpha q-25) and nontransgenic siblings underwent microsurgical creation of transverse aortic coarctation and the morphometric, functional, and molecular characteristics of these pressure-overloaded hearts were compared at increasing times after surgery. Before aortic banding, isolated G alpha q-25 ventricular myocytes exhibited contractile depression (depressed +dl/dt and -dl/dt) and G alpha q-25 hearts showed a pattern of fetal gene expression similar to the known characteristics of nontransgenic pressure-overloaded mice. Three weeks after transverse aortic banding, G alpha q-25 left ventricles hypertrophied to a similar extent (approximately 30% increase) as nontransgenic mice. However, whereas nontransgenic mice exhibited concentric left ventricular remodeling with maintained ejection performance (compensated hypertrophy), G alpha q-25 left ventricles developed eccentric hypertrophy and ejection performance deteriorated, ultimately resulting in left heart failure (decompensated hypertrophy). The signature hypertrophy-associated progress of fetal cardiac gene expression observed at baseline in G alpha q-25 developed after aortic banding of nontransgenic mice but did not significantly change in aortic-banded G alpha q-25 mice. CONCLUSIONS: Intrinsic cardiac myocyte G alpha q activation stimulates fetal gene expression and depresses cardiac myocyte contractility. Superimposition of the hemodynamic stress of pressure overload on G alpha q overexpression stimulates a maladaptive form of eccentric hypertrophy that leads to rapid functional decompensation. Therefore G alpha q-stimulated cardiac hypertrophy is functionally deleterious and compromises the ability of the heart to adapt to increased mechanical load. This finding supports a reevaluation of accepted concepts regarding the mechanisms for compensation and decompensation in pressure-overload hypertrophy. |