|  Help  |  About  |  Contact Us

Publication : Endogenous Selenoprotein P, a Liver-Derived Secretory Protein, Mediates Myocardial Ischemia/Reperfusion Injury in Mice.

First Author  Chadani H Year  2018
Journal  Int J Mol Sci Volume  19
Issue  3 PubMed ID  29547524
Mgi Jnum  J:271765 Mgi Id  MGI:6282160
Doi  10.3390/ijms19030878 Citation  Chadani H, et al. (2018) Endogenous Selenoprotein P, a Liver-Derived Secretory Protein, Mediates Myocardial Ischemia/Reperfusion Injury in Mice. Int J Mol Sci 19(3):878
abstractText  Selenoprotein P (SeP), a liver-derived secretory protein, functions as a selenium supply protein in the body. SeP has been reported to be associated with insulin resistance in humans through serial analysis of gene expression. Recently, SeP has been found to inhibit vascular endothelial growth factor-stimulated cell proliferation in human umbilical vein endothelial cells, and impair angiogenesis in a mouse hind limb model. In this study, the role of SeP in ischemia/reperfusion (I/R) injury has been investigated. SeP knockout (KO) and littermate wild-type (WT) mice were subjected to 30 min of myocardial ischemia followed by 24 h of reperfusion. The myocardial infarct area/area at risk (IA/AAR), evaluated using Evans blue (EB) and 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in SeP KO mice than in WT mice. The number of terminal de-oxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei was significantly lower in SeP KO mice than in WT mice. In addition, caspase-3 activation was reduced in SeP KO mice compared to that in WT mice. Furthermore, phosphoinositide 3-kinase/Akt and Erk levels were examined for the reperfusion injury salvage kinase (RISK) pathway. Interestingly, SeP KO significantly increased the phosphorylation of IGF-1, Akt, and Erk compared to that in WT mice after I/R. Finally, I/R-induced myocardial IA/AAR was significantly increased in SeP KO mice overexpressing SeP in the liver compared to other SeP KO mice. These results, together, suggest that inhibition of SeP protects the heart from I/R injury through upregulation of the RISK pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression