First Author | Vroon A | Year | 2004 |
Journal | J Leukoc Biol | Volume | 75 |
Issue | 4 | Pages | 698-704 |
PubMed ID | 14704365 | Mgi Jnum | J:89033 |
Mgi Id | MGI:3037631 | Doi | 10.1189/jlb.0703320 |
Citation | Vroon A, et al. (2004) GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo. J Leukoc Biol 75(4):698-704 |
abstractText | The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling pathway is thought to play an important role in the induction of neutrophil mobilization from the bone marrow in response to granulocyte-colony stimulating factor (G-CSF) treatment. CXCR4 belongs to the family of G protein-coupled receptors. Multiple members of this receptor family are desensitized by agonist-induced G protein-coupled receptor kinase (GRK)-mediated phosphorylation. Here, we demonstrate that in vitro SDF-1-induced chemotaxis of bone marrow-derived neutrophils from GRK6-deficient mice is significantly enhanced and that desensitization of the calcium response to SDF-1 is impaired in GRK6-/- neutrophils. CXCR4 activation by SDF-1 provides a key retention signal for hematopoietic cells in the bone marrow. It is interesting that we observed that in the absence of GRK6, the G-CSF-induced increase in circulating neutrophils is profoundly impaired. Three days after injection of pegylated-G-CSF, significantly lower numbers of circulating neutrophils were observed in GRK6-/- as compared with wild-type (WT) mice. In addition, early/acute neutrophil mobilization in response to G-CSF (3 h after treatment) was also impaired in GRK6-/- mice. However, blood neutrophil levels in untreated GRK6-/- and WT mice were not different. Moreover, the percentage of neutrophils in the bone marrow after G-CSF treatment was increased to the same extent in WT and GRK6-/- mice, indicating that neutrophil production is normal in the absence of GRK6. However, the increased chemotactic sensitivity of GRK6-/- neutrophils to SDF-1 was retained after G-CSF treatment. In view of these data, we suggest that the impaired G-CSF-induced neutrophil mobilization in the absence of GRK6 may be a result of enhanced CXCR4-mediated retention of PMN in the bone marrow. |