|  Help  |  About  |  Contact Us

Publication : Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum.

First Author  Arlotta P Year  2008
Journal  J Neurosci Volume  28
Issue  3 Pages  622-32
PubMed ID  18199763 Mgi Jnum  J:131380
Mgi Id  MGI:3773576 Doi  10.1523/JNEUROSCI.2986-07.2008
Citation  Arlotta P, et al. (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28(3):622-32
abstractText  Striatal medium spiny neurons (MSN) are critically involved in motor control, and their degeneration is a principal component of Huntington's disease. We find that the transcription factor Ctip2 (also known as Bcl11b) is central to MSN differentiation and striatal development. Within the striatum, it is expressed by all MSN, although it is excluded from essentially all striatal interneurons. In the absence of Ctip2, MSN do not fully differentiate, as demonstrated by dramatically reduced expression of a large number of MSN markers, including DARPP-32, FOXP1, Chrm4, Reelin, MOR1 (mu-opioid receptor 1), glutamate receptor 1, and Plexin-D1. Furthermore, MSN fail to aggregate into patches, resulting in severely disrupted patch-matrix organization within the striatum. Finally, heterotopic cellular aggregates invade the Ctip2-/- striatum, suggesting a failure by MSN to repel these cells in the absence of Ctip2. This is associated with abnormal dopaminergic innervation of the mutant striatum and dramatic changes in gene expression, including dysregulation of molecules involved in cellular repulsion. Together, these data indicate that Ctip2 is a critical regulator of MSN differentiation, striatal patch development, and the establishment of the cellular architecture of the striatum.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

40 Bio Entities

Trail: Publication

0 Expression