|  Help  |  About  |  Contact Us

Publication : Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion.

First Author  Burkard N Year  2010
Journal  Circulation Volume  122
Issue  16 Pages  1588-603
PubMed ID  20921441 Mgi Jnum  J:179484
Mgi Id  MGI:5302478 Doi  10.1161/CIRCULATIONAHA.109.933630
Citation  Burkard N, et al. (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation 122(16):1588-603
abstractText  BACKGROUND: We previously demonstrated that conditional overexpression of neuronal nitric oxide synthase (nNOS) inhibited L-type Ca2+ channels and decreased myocardial contractility. However, nNOS has multiple targets within the cardiac myocyte. We now hypothesize that nNOS overexpression is cardioprotective after ischemia/reperfusion because of inhibition of mitochondrial function and a reduction in reactive oxygen species generation. METHODS AND RESULTS: Ischemia/reperfusion injury in wild-type mice resulted in nNOS accumulation in the mitochondria. Similarly, transgenic nNOS overexpression caused nNOS abundance in mitochondria. nNOS translocation into the mitochondria was dependent on heat shock protein 90. Ischemia/reperfusion experiments in isolated hearts showed a cardioprotective effect of nNOS overexpression. Infarct size in vivo was also significantly reduced. nNOS overexpression also caused a significant increase in mitochondrial nitrite levels accompanied by a decrease of cytochrome c oxidase activity. Accordingly, O(2) consumption in isolated heart muscle strips was decreased in nNOS-overexpressing nNOS(+)/alphaMHC-tTA(+) mice already under resting conditions. Additionally, we found that the reactive oxygen species concentration was significantly decreased in hearts of nNOS-overexpressing nNOS(+)/alphaMHC-tTA(+) mice compared with noninduced nNOS(+)/alphaMHC-tTA(+) animals. CONCLUSION: We demonstrated that conditional transgenic overexpression of nNOS resulted in myocardial protection after ischemia/reperfusion injury. Besides a reduction in reactive oxygen species generation, this might be caused by nitrite-mediated inhibition of mitochondrial function, which reduced myocardial oxygen consumption already under baseline conditions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression