|  Help  |  About  |  Contact Us

Publication : Functional reprogramming of polyploidization in megakaryocytes.

First Author  Trakala M Year  2015
Journal  Dev Cell Volume  32
Issue  2 Pages  155-67
PubMed ID  25625205 Mgi Jnum  J:238898
Mgi Id  MGI:5824486 Doi  10.1016/j.devcel.2014.12.015
Citation  Trakala M, et al. (2015) Functional reprogramming of polyploidization in megakaryocytes. Dev Cell 32(2):155-67
abstractText  Polyploidization is a natural process that frequently accompanies differentiation; its deregulation is linked to genomic instability and cancer. Despite its relevance, why cells select different polyploidization mechanisms is unknown. Here we report a systematic genetic analysis of endomitosis, a process in which megakaryocytes become polyploid by entering mitosis but aborting anaphase. Whereas ablation of the APC/C cofactor Cdc20 results in mitotic arrest and severe thrombocytopenia, lack of the kinases Aurora-B, Cdk1, or Cdk2 does not affect megakaryocyte polyploidization or platelet levels. Ablation of Cdk1 forces a switch to endocycles without mitosis, whereas polyploidization in the absence of Cdk1 and Cdk2 occurs in the presence of aberrant re-replication events. Importantly, ablation of these kinases rescues the defects in Cdc20 null megakaryocytes. These findings suggest that endomitosis can be functionally replaced by alternative polyploidization mechanisms in vivo and provide the cellular basis for therapeutic approaches aimed to discriminate mitotic and polyploid cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression