|  Help  |  About  |  Contact Us

Publication : Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis.

First Author  Zhang T Year  2011
Journal  Proc Natl Acad Sci U S A Volume  108
Issue  21 Pages  8879-84
PubMed ID  21555576 Mgi Jnum  J:171893
Mgi Id  MGI:5002375 Doi  10.1073/pnas.1017127108
Citation  Zhang T, et al. (2011) Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc Natl Acad Sci U S A 108(21):8879-84
abstractText  Mutations in RPE65 or lecithin-retinol acyltransferase (LRAT) disrupt 11-cis-retinal recycling and cause Leber congenital amaurosis (LCA), the most severe retinal dystrophy in early childhood. We used Lrat(-)(/-), a murine model for LCA, to investigate the mechanism of rapid cone degeneration. Although both M and S cone opsins mistrafficked as reported previously, mislocalized M-opsin was degraded whereas mislocalized S-opsin accumulated in Lrat(-)(/-) cones before the onset of massive ventral/central cone degeneration. As the ventral and central retina express higher levels of S-opsin than the dorsal retina in mice, our results may explain why ventral and central cones degenerate more rapidly than dorsal cones in Rpe65(-)(/-) and Lrat(-)(/-) LCA models. In addition, human blue opsin and mouse S-opsin, but not mouse M-opsin or human red/green opsins, aggregated to form cytoplasmic inclusions in transfected cells, which may explain why blue cone function is lost earlier than red/green-cone function in patients with LCA. The aggregation of short-wavelength opsins likely caused rapid cone degenerations through an endoplasmic reticulum stress pathway, as demonstrated in both the Lrat(-)(/-) retina and transfected cells. Replacing rhodopsin with S-opsin in Lrat(-)(/-) rods resulted in mislocalization and aggregation of S-opsin in the inner segment and the synaptic region of rods, ER stress, and dramatically accelerated rod degeneration. Our results demonstrate that cone opsins play a major role in determining the degeneration rate of photoreceptors in LCA.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Authors

6 Bio Entities

Trail: Publication

0 Expression