|  Help  |  About  |  Contact Us

Publication : Grid cells use HCN1 channels for spatial scaling.

First Author  Giocomo LM Year  2011
Journal  Cell Volume  147
Issue  5 Pages  1159-70
PubMed ID  22100643 Mgi Jnum  J:178943
Mgi Id  MGI:5300656 Doi  10.1016/j.cell.2011.08.051
Citation  Giocomo LM, et al. (2011) Grid Cells Use HCN1 Channels for Spatial Scaling. Cell 147(5):1159-70
abstractText  Entorhinal grid cells have periodic, hexagonally patterned firing locations that scale up progressively along the dorsal-ventral axis of medial entorhinal cortex. This topographic expansion corresponds with parallel changes in cellular properties dependent on the hyperpolarization-activated cation current (Ih), which is conducted by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. To test the hypothesis that grid scale is determined by Ih, we recorded grid cells in mice with forebrain-specific knockout of HCN1. We find that, although the dorsal-ventral gradient of the grid pattern was preserved in HCN1 knockout mice, the size and spacing of the grid fields, as well as the period of the accompanying theta modulation, was expanded at all dorsal-ventral levels. There was no change in theta modulation of simultaneously recorded entorhinal interneurons. These observations raise the possibility that, during self-motion-based navigation, Ih contributes to the gain of the transformation from movement signals to spatial firing fields.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression