First Author | Bodnar JS | Year | 2002 |
Journal | Nat Genet | Volume | 30 |
Issue | 1 | Pages | 110-6 |
PubMed ID | 11753387 | Mgi Jnum | J:75395 |
Mgi Id | MGI:2176417 | Doi | 10.1038/ng811 |
Citation | Bodnar JS, et al. (2002) Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 30(1):110-6 |
abstractText | Familial combined hyperlipidemia (FCHL, MIM-144250) is a common, multifactorial and heterogeneous dyslipidemia predisposing to premature coronary artery disease and characterized by elevated plasma triglycerides, cholesterol, or both. We identified a mutant mouse strain, HcB-19/Dem (HcB-19), that shares features with FCHL, including hypertriglyceridemia, hypercholesterolemia, elevated plasma apolipoprotein B and increased secretion of triglyceride-rich lipoproteins. The hyperlipidemia results from spontaneous mutation at a locus, Hyplip1, on distal mouse chromosome 3 in a region syntenic with a 1q21-q23 FCHL locus identified in Finnish, German, Chinese and US families. We fine-mapped Hyplip1 to roughly 160 kb, constructed a BAC contig and sequenced overlapping BACs to identify 13 candidate genes. We found substantially decreased mRNA expression for thioredoxin interacting protein (Txnip). Sequencing of the critical region revealed a Txnip nonsense mutation in HcB-19 that is absent in its normolipidemic parental strains. Txnip encodes a cytoplasmic protein that binds and inhibits thioredoxin, a major regulator of cellular redox state. The mutant mice have decreased CO2 production but increased ketone body synthesis, suggesting that altered redox status down-regulates the citric-acid cycle, sparing fatty acids for triglyceride and ketone body production. These results reveal a new pathway of potential clinical significance that contributes to plasma lipid metabolism. |