First Author | Xu H | Year | 2010 |
Journal | FASEB J | Volume | 24 |
Issue | 5 | Pages | 1583-92 |
PubMed ID | 20056715 | Mgi Jnum | J:162368 |
Mgi Id | MGI:4818756 | Doi | 10.1096/fj.09-137323 |
Citation | Xu H, et al. (2010) Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells. FASEB J 24(5):1583-92 |
abstractText | The immunity-related GTPase Irgm1, also called LRG-47, is known to regulate host resistance to intracellular pathogens through multiple mechanisms that include controlling the survival of T lymphocytes. Here, we address whether Irgm1 also plays a role in the pathogenesis of experimental autoimmune encephalitis (EAE). We find that Irgm1/LRG-47 is a significant factor in the progression of EAE and multiple sclerosis (MS). Expression of Irgm1 was robustly elevated in MS-affected lesions and in the central nervous system (CNS) of myelin basic protein (MBP)-induced EAE mice, especially in cells of lymphoid and mononuclear phagocyte origin. Homozygous Irgm1 null mice were resistant to MBP-induced EAE, and CD4(+) T cells in spleen and CNS of these mice displayed decreased proliferative capacity, increased apoptosis, and up-regulated interferon (IFN)-gamma induction. Therefore, Irgm1-induced survival of autoreactive CD4(+) T cells contributes significantly to the pathogenesis of EAE. Blockade of Irgm1 may be a potential therapeutic strategy for halting multiple sclerosis. |