First Author | Zhang Y | Year | 2009 |
Journal | Am J Pathol | Volume | 175 |
Issue | 6 | Pages | 2489-500 |
PubMed ID | 19893050 | Mgi Jnum | J:155317 |
Mgi Id | MGI:4413500 | Doi | 10.2353/ajpath.2009.090530 |
Citation | Zhang Y, et al. (2009) Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am J Pathol 175(6):2489-500 |
abstractText | The present study dissected the role of a Th2 bias in pathogenesis of Cryptococcus neoformans H99 infection by comparing inhalational H99 infections in wild-type BALB/c and IL-4/IL-13 double knockout mice. H99-infected wild-type mice showed all major hallmarks of Th2 but not Th1/Th17 immunity in the lungs and lung-associated lymph nodes. In contrast, the IL-4/13(-/-) mice developed robust hallmarks of Th1 and Th17 but not Th2 polarization. The IL-4/IL-13 deletion prevented pulmonary eosinophilia, goblet cell metaplasia in the airways and resulted in elevated serum IgE, and a switch from alternative to classical activation of macrophages. The development of a robust Th1/Th17 response and classical activation of macrophages resulted in significant containment of H99 in the lungs of IL-4/13(-/-) mice compared with unopposed growth of H99 in the lungs of wild-type mice. However, IL-4/13(-/-) mice showed only 1-week longer survival compared with wild-type mice. The comparison of brain and spleen cryptococcal loads at weeks 2, 3, and 4 postinfection revealed that the systemic dissemination in IL-4/13(-/-) mice occurred with an approximate 1-week delay but subsequently progressed with similar rate as in the wild-type mice. Furthermore, wild-type and IL-4/13(-/-) mice developed equivalently severe meningitis/encephalitis at the time of death. These data indicate that the Th2 immune bias is a crucial mechanism for pulmonary virulence of H99, whereas other mechanisms are largely responsible for its central nervous system tropism and systemic dissemination. |