|  Help  |  About  |  Contact Us

Publication : YY1 acts as a transcriptional activator of Hoxa5 gene expression in mouse organogenesis.

First Author  Bérubé-Simard FA Year  2014
Journal  PLoS One Volume  9
Issue  4 Pages  e93989
PubMed ID  24705708 Mgi Jnum  J:215019
Mgi Id  MGI:5604549 Doi  10.1371/journal.pone.0093989
Citation  Berube-Simard FA, et al. (2014) YY1 acts as a transcriptional activator of Hoxa5 gene expression in mouse organogenesis. PLoS One 9(4):e93989
abstractText  The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression