|  Help  |  About  |  Contact Us

Publication : Loss of Raptor induces Sertoli cells into an undifferentiated state in mice.

First Author  Xie M Year  2022
Journal  Biol Reprod Volume  107
Issue  4 Pages  1125-1138
PubMed ID  35594452 Mgi Jnum  J:338635
Mgi Id  MGI:7469681 Doi  10.1093/biolre/ioac104
Citation  Xie M, et al. (2022) Loss of Raptor induces Sertoli cells into an undifferentiated state in mice. Biol Reprod 107(4):1125-1138
abstractText  In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression