|  Help  |  About  |  Contact Us

Publication : The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages.

First Author  Vail KJ Year  2021
Journal  PLoS Pathog Volume  17
Issue  9 Pages  e1009888
PubMed ID  34473814 Mgi Jnum  J:354538
Mgi Id  MGI:6787910 Doi  10.1371/journal.ppat.1009888
Citation  Vail KJ, et al. (2021) The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages. PLoS Pathog 17(9):e1009888
abstractText  Rhodococcus equi is a major cause of foal pneumonia and an opportunistic pathogen in immunocompromised humans. While alveolar macrophages constitute the primary replicative niche for R. equi, little is known about how intracellular R. equi is sensed by macrophages. Here, we discovered that in addition to previously characterized pro-inflammatory cytokines (e.g., Tnfa, Il6, Il1b), macrophages infected with R. equi induce a robust type I IFN response, including Ifnb and interferon-stimulated genes (ISGs), similar to the evolutionarily related pathogen, Mycobacterium tuberculosis. Follow up studies using a combination of mammalian and bacterial genetics demonstrated that induction of this type I IFN expression program is largely dependent on the cGAS/STING/TBK1 axis of the cytosolic DNA sensing pathway, suggesting that R. equi perturbs the phagosomal membrane and causes DNA release into the cytosol following phagocytosis. Consistent with this, we found that a population of ~12% of R. equi phagosomes recruits the galectin-3,-8 and -9 danger receptors. Interestingly, neither phagosomal damage nor induction of type I IFN require the R. equi's virulence-associated plasmid. Importantly, R. equi infection of both mice and foals stimulates ISG expression, in organs (mice) and circulating monocytes (foals). By demonstrating that R. equi activates cytosolic DNA sensing in macrophages and elicits type I IFN responses in animal models, our work provides novel insights into how R. equi engages the innate immune system and furthers our understanding how this zoonotic pathogen causes inflammation and disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression