|  Help  |  About  |  Contact Us

Publication : Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment.

First Author  Corradi A Year  2008
Journal  J Cell Sci Volume  121
Issue  Pt 18 Pages  3042-51
PubMed ID  18713831 Mgi Jnum  J:139688
Mgi Id  MGI:3809368 Doi  10.1242/jcs.035063
Citation  Corradi A, et al. (2008) Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment. J Cell Sci 121(Pt 18):3042-51
abstractText  Synapsin I (SynI) and synapsin II (SynII) are major synaptic vesicle (SV) proteins that function in the regulation of the availability of SVs for release in mature neurons. SynI and SynII show a high level of sequence similarity and share many functions in vivo, although distinct physiological roles for the two proteins have been proposed. Both SynI(-/-) and SynII(-/-) mice have a normal lifespan, but exhibit a decreased number of SVs and synaptic depression upon high-frequency stimulation. Because of the role of the synapsin proteins in synaptic organization and plasticity, we studied the long-lasting effects of synapsin deletion on the phenotype of SynI(-/-) and SynII(-/-) mice during aging. Both SynI(-/-) and SynII(-/-) mice displayed behavioural defects that emerged during aging and involved emotional memory in both mutants, and spatial memory in SynII(-/-) mice. These abnormalities, which were more pronounced in SynII(-/-) mice, were associated with neuronal loss and gliosis in the cerebral cortex and hippocampus. The data indicate that SynI and SynII have specific and non-redundant functions, and that synaptic dysfunctions associated with synapsin mutations negatively modulate cognitive performances and neuronal survival during senescence.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression