|  Help  |  About  |  Contact Us

Publication : Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice.

First Author  Hanada K Year  2007
Journal  Circ Res Volume  100
Issue  5 Pages  738-46
PubMed ID  17293478 Mgi Jnum  J:133703
Mgi Id  MGI:3783956 Doi  10.1161/01.RES.0000260181.19449.95
Citation  Hanada K, et al. (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ Res 100(5):738-46
abstractText  The Fibulins are a 6-member protein family hypothesized to function as intermolecular bridges that stabilize the organization of extracellular matrix structures. Here, we show that reduced expression of Fibulin-4 leads to aneurysm formation, dissection of the aortic wall and cardiac abnormalities. Fibulin-4 knockdown mice with a hypomorphic expression allele arose from targeted disruption of the adjacent Mus81 endonuclease gene. Mice homozygous for the Fibulin-4 reduced expression allele (Fibulin-4(R/R)) show dilatation of the ascending aorta and a tortuous and stiffened aorta, resulting from disorganized elastic fiber networks. They display thickened aortic valvular leaflets that are associated with aortic valve stenosis and insufficiency. Strikingly, already a modest reduction in expression of Fibulin-4 in the heterozygous Fibulin-4(+/R) mice occasionally resulted in small aneurysm formation. To get insight into the underlying molecular pathways involved in aneurysm formation and response to aortic failure, we determined the aorta transcriptome of Fibulin-4(+/R) and Fibulin-4(R/R) animals and identified distinct and overlapping biological processes that were significantly overrepresented including cytoskeleton organization, cell adhesion, apoptosis and several novel gene targets. Transcriptome and protein expression analysis implicated perturbation of TGF-beta signaling in the pathogenesis of aneurysm in fibulin-4 deficient mice. Our results show that the dosage of a single gene can determine the severity of aneurysm formation and imply that disturbed TGF-beta signaling underlies multiple aneurysm phenotypes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression