First Author | Huang J | Year | 2022 |
Journal | Nat Commun | Volume | 13 |
Issue | 1 | Pages | 4433 |
PubMed ID | 35907876 | Mgi Jnum | J:327369 |
Mgi Id | MGI:7328074 | Doi | 10.1038/s41467-022-31996-9 |
Citation | Huang J, et al. (2022) CDC-like kinase 4 deficiency contributes to pathological cardiac hypertrophy by modulating NEXN phosphorylation. Nat Commun 13(1):4433 |
abstractText | Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure. |