|  Help  |  About  |  Contact Us

Publication : Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice.

First Author  Sharma M Year  2020
Journal  PLoS One Volume  15
Issue  12 Pages  e0234893
PubMed ID  33382695 Mgi Jnum  J:300159
Mgi Id  MGI:6491330 Doi  10.1371/journal.pone.0234893
Citation  Sharma M, et al. (2020) Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice. PLoS One 15(12):e0234893
abstractText  Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression