|  Help  |  About  |  Contact Us

Publication : Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex.

First Author  Nacher J Year  2010
Journal  Neuroscience Volume  167
Issue  3 Pages  825-37
PubMed ID  20206239 Mgi Jnum  J:161492
Mgi Id  MGI:4459384 Doi  10.1016/j.neuroscience.2010.02.067
Citation  Nacher J, et al. (2010) Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience 167(3):825-37
abstractText  Polysialic acid (PSA) is a negatively charged carbohydrate polymer, which confers antiadhesive properties to the neural cell adhesion molecule NCAM and facilitates cellular plasticity during brain development. In mice, PSA expression decreases drastically during the first postnatal weeks and it gets confined to immature neurons and regions displaying structural plasticity during adulthood. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII and ST8SiaIV. To study their individual contribution to polysialylation in the adult, we analyzed PSA expression in mice deficient for either polysialyltransferase. Focusing on the cerebral cortex, our results indicate that ST8SiaIV is solely responsible for PSA expression in mature interneurons and in most regions of cortical neuropil. By contrast, ST8SiaII is the major polysialyltransferase in immature neurons of the paleocortex layer II and the hippocampal subgranular zone. The numbers of cells expressing PSA or doublecortin, another marker of immature neurons, were increased in the paleocortex layer II of ST8SiaIV-deficient mice, indicating altered differentiation of these cells. Analysis of doublecortin expression also indicated that the production of new granule neurons in the subgranular zone of ST8SiaII-deficient mice is not affected. However, many of the immature granule neurons showed aberrant locations and morphology, suggesting a role of ST8SiaII in their terminal differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression