| First Author | Mayer A | Year | 2019 |
| Journal | Proc Natl Acad Sci U S A | Volume | 116 |
| Issue | 13 | Pages | 5914-5919 |
| PubMed ID | 30850527 | Mgi Jnum | J:273865 |
| Mgi Id | MGI:6286159 | Doi | 10.1073/pnas.1812800116 |
| Citation | Mayer A, et al. (2019) Regulation of T cell expansion by antigen presentation dynamics. Proc Natl Acad Sci U S A 116(13):5914-5919 |
| abstractText | An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher-affinity clones can suppress the proliferation of lower-affinity clones, thereby promoting the specificity of the response. Using the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response. |