First Author | Yang SJ | Year | 2009 |
Journal | Diabetologia | Volume | 52 |
Issue | 5 | Pages | 972-81 |
PubMed ID | 19277603 | Mgi Jnum | J:148117 |
Mgi Id | MGI:3843559 | Doi | 10.1007/s00125-009-1309-8 |
Citation | Yang SJ, et al. (2009) Inhibition of the chemokine (C-C motif) ligand 2/chemokine (C-C motif) receptor 2 pathway attenuates hyperglycaemia and inflammation in a mouse model of hepatic steatosis and lipoatrophy. Diabetologia 52(5):972-81 |
abstractText | AIMS/HYPOTHESIS: Using a mouse model of lipoatrophic diabetes, we hypothesised that the chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-C motif) receptor 2 (CCR2) pathway contributes to hepatic macrophage accumulation and insulin resistance through induction of a chronic inflammatory state. METHODS: Metabolic variables of insulin resistance and inflammation were characterised in wild-type and lipoatrophic A-ZIP/F-1 transgenic (AZIP-Tg) mice. The AZIP-Tg mice were then treated with a CCR2 antagonist (RS504393, 2 mg kg(-1) day(-1)) or vehicle for 28 days via a subcutaneous mini-osmotic pump to examine the role of the CCL2/CCR2 pathway in lipoatrophic diabetes. RESULTS: The lipoatrophic AZIP-Tg mice were diabetic with high fasting glucose and serum insulin concentrations compared with littermate controls. The livers of AZIP-Tg mice were more than threefold enlarged and exhibited increased triacylglycerol content. CCL2 levels were highly elevated in both liver and serum of the AZIP-Tg mice compared with controls. In addition, the circulating CCL2 concentration was associated with increased macrophage accumulation and inflammation as documented by upregulation of Cd68 gene and Tnf-alpha [also known as Tnf] gene in livers from the AZIP-Tg mice. Treatment of the lipoatrophic AZIP-Tg mice with the CCR2 antagonist ameliorated the hyperglycaemia, hyperinsulinaemia and hepatomegaly in conjunction with a reduction in liver inflammation. CONCLUSIONS/INTERPRETATION: These findings demonstrate a significant role of the CCL2/CCR2 pathway in lipoatrophy-induced diabetes and provide clear evidence that metabolic improvements resulting from the inhibition of this inflammatory pathway are not adipose tissue-dependent. |