First Author | Stoltenberg M | Year | 2007 |
Journal | Neuroscience | Volume | 150 |
Issue | 2 | Pages | 357-69 |
PubMed ID | 17949919 | Mgi Jnum | J:130788 |
Mgi Id | MGI:3772326 | Doi | 10.1016/j.neuroscience.2007.09.025 |
Citation | Stoltenberg M, et al. (2007) Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 150(2):357-69 |
abstractText | The ZnT3 zinc transporter is uniquely expressed in cortical glutamatergic synapses where it organizes zinc release into the synaptic cleft and mediates beta-amyloid deposition in transgenic mice. We studied the association of zinc in plaques in relation to cytoarchitectural zinc localization in the APP/PS1 transgenic mouse model of Alzheimer's disease. The effects of low dietary zinc for 3 months upon brain pathology were also studied. We determined that synaptic zinc distribution within cortical layers is paralleled by amyloid burden, which is heaviest for both in layers 2-3 and 5. ZnT3 immunoreactivity is prominent in dystrophic neurites within amyloid plaques. Low dietary zinc caused a significant 25% increase in total plaque volume in Alzheimer's mice using stereological measures. The level of oxidized proteins in brain tissue did not changed in animals on a zinc-deficient diet compared with controls. No obvious changes were observed in the autometallographic pattern of zinc-enriched terminals in the neocortex or in the expression levels of zinc transporters, zinc importers or metallothioneins. A small decrease in plasma zinc induced by the low-zinc diet was consistent with the subclinical zinc deficiency that is common in older human populations. While the mechanism remains uncertain, our findings indicate that subclinical zinc deficiency may be a risk factor for Alzheimer's pathology. |