First Author | Machová E | Year | 2010 |
Journal | Neurobiol Dis | Volume | 38 |
Issue | 1 | Pages | 27-35 |
PubMed ID | 20053373 | Mgi Jnum | J:159939 |
Mgi Id | MGI:4453086 | Doi | 10.1016/j.nbd.2009.12.023 |
Citation | Machova E, et al. (2010) Functional cholinergic damage develops with amyloid accumulation in young adult APPswe/PS1dE9 transgenic mice. Neurobiol Dis 38(1):27-35 |
abstractText | We investigated the functional characteristics of pre- and postsynaptic cholinergic transmission in APPswe/PS1dE9 double transgenic mice at a young age (7-10 weeks) before the onset of amyloid plaque formation and at adult age (5-6 months) at its onset. We compared brain slices from cerebral cortex and hippocampus with amyloid deposits to slices from striatum with no amyloid plaques by 6 months of age. In young transgenic mice we found no impairments of preformed and newly synthesized [(3)H]-ACh release, indicating intact releasing machinery and release turnover, respectively. Adult transgenic mice displayed a significant increase in preformed [(3)H]-ACh release in cortex but a decrease in hippocampus and striatum. The extent of presynaptic muscarinic autoregulation was unchanged. Evoked release of newly synthesized [(3)H]-ACh was significantly reduced in the cortex and hippocampus but unchanged in the striatum. Carbachol-induced G-protein activation in cortical membranes displayed decreased potency but normal efficacy in adult animals and no changes in young animals. These results indicate that functional pre- and postsynaptic cholinergic deficits are not present in APPswe/PS1dE9 transgenic mice before 10 weeks of age, but develop along with beta-amyloid accumulation in the brain. |