|  Help  |  About  |  Contact Us

Publication : H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: A study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene.

First Author  Yoshida T Year  2001
Journal  Circulation Volume  103
Issue  12 Pages  1695-701
PubMed ID  11273999 Mgi Jnum  J:95461
Mgi Id  MGI:3526107 Doi  10.1161/01.cir.103.12.1695
Citation  Yoshida T, et al. (2001) H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: A study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene. Circulation 103(12):1695-701
abstractText  BACKGROUND: Heme oxygenase-1 (H(mox-1)) has been implicated in protection of cells against ischemia/reperfusion injury. METHODS AND RESULTS: To examine the physiological role of H(mox-1), a line of heterozygous H(mox-1)-knockout mice was developed by targeted disruption of the mouse H(mox-1) gene. Transgene integration was confirmed and characterized at the protein level. A 40% reduction of H(mox-1) protein occurred in the hearts of H(mox-1)(+/)(-) mice compared with those of wild-type mice. Isolated mouse hearts from H(mox-1)(+/)(-) mice and wild-type controls perfused via the Langendorff mode were subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. The H(mox-1)(+/)(-) hearts displayed reduced ventricular recovery, increased creatine kinase release, and increased infarct size compared with those of wild-type controls, indicating that these H(mox-1)(+/)(-) hearts were more susceptible to ischemia/reperfusion injury than wild-type controls. These results also suggest that H(mox-1)(+/)(-) hearts are subjected to increased amounts of oxidative stress. Treatment with 2 different antioxidants, Trolox or N:-acetylcysteine, only partially rescued the H(mox-1)(+/)(-) hearts from ischemia/reperfusion injury. Preconditioning, which renders the heart tolerant to subsequent lethal ischemia/reperfusion, failed to adapt the hearts of the H(mox-1)(+/)(-) mice compared with wild-type hearts. CONCLUSIONS: These results demonstrate that H(mox-1) plays a crucial role in ischemia/reperfusion injury not only by functioning as an intracellular antioxidant but also by inducing its own expression under stressful conditions such as preconditioning.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression