|  Help  |  About  |  Contact Us

Publication : Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination.

First Author  Li G Year  2013
Journal  Cell Rep Volume  5
Issue  3 Pages  702-714
PubMed ID  24209747 Mgi Jnum  J:205129
Mgi Id  MGI:5544137 Doi  10.1016/j.celrep.2013.09.031
Citation  Li G, et al. (2013) Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination. Cell Rep 5(3):702-14
abstractText  Class-switch DNA recombination (CSR) is central to the antibody response, in that it changes the immunoglobulin heavy chain (IgH) constant region, thereby diversifying biological effector functions of antibodies. The activation-induced cytidine deaminase (AID)-centered CSR machinery excises and rejoins DNA between an upstream (donor) and a downstream (acceptor) S region, which precede the respective constant region DNA. AID is stabilized on S regions by 14-3-3 adaptors. These adaptors display a high affinity for 5'-AGCT-3' repeats, which recur in all S regions. However, how 14-3-3, AID, and the CSR machinery target exclusively the donor and acceptor S regions is poorly understood. Here, we show that histone methyltransferases and acetyltransferases are induced by CD40 or Toll-like receptor signaling and catalyze H3K4me3 and H3K9ac/K14ac histone modifications, which are enriched in S regions but do not specify the S region targets of CSR. By contrast, the combinatorial H3K9acS10ph modification specifically marks the S regions set to recombine and directly recruits 14-3-3 adaptors for AID stabilization there. Inhibition of the enzymatic activity of GCN5 and PCAF histone acetyltransferases reduces H3K9acS10ph in S regions, 14-3-3 and AID stabilization, and CSR. Thus, H3K9acS10ph is a histone code that is "written" specifically in S regions and is "read" by 14-3-3 adaptors to target AID for CSR as an important biological outcome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression