First Author | Arora K | Year | 2015 |
Journal | Am J Pathol | Volume | 185 |
Issue | 10 | Pages | 2790-804 |
PubMed ID | 26261085 | Mgi Jnum | J:226644 |
Mgi Id | MGI:5698016 | Doi | 10.1016/j.ajpath.2015.06.007 |
Citation | Arora K, et al. (2015) Altered cGMP Dynamics at the Plasma Membrane Contribute to Diarrhea in Ulcerative Colitis. Am J Pathol 185(10):2790-804 |
abstractText | Ulcerative colitis (UC) belongs to inflammatory bowel disorders, a group of gastrointestinal disorders that can produce serious recurring diarrhea in affected patients. The mechanism for UC- and inflammatory bowel disorder-associated diarrhea is not well understood. The cystic fibrosis transmembrane-conductance regulator (CFTR) chloride channel plays an important role in fluid and water transport across the intestinal mucosa. CFTR channel function is regulated in a compartmentalized manner through the formation of CFTR-containing macromolecular complexes at the plasma membrane. In this study, we demonstrate the involvement of a novel macromolecular signaling pathway that causes diarrhea in UC. We found that a nitric oxide-producing enzyme, inducible nitric oxide synthase (iNOS), is overexpressed under the plasma membrane and generates compartmentalized cGMP in gut epithelia in UC. The scaffolding protein Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) bridges iNOS with CFTR, forming CFTR-NHERF2-iNOS macromolecular complexes that potentiate CFTR channel function via the nitric oxide-cGMP pathway under inflammatory conditions both in vitro and in vivo. Potential disruption of these complexes in Nherf2(-/-) mice may render them more resistant to CFTR-mediated secretory diarrhea than Nherf2(+/+) mice in murine colitis models. Our study provides insight into the mechanism of pathophysiologic occurrence of diarrhea in UC and suggests that targeting CFTR and CFTR-containing macromolecular complexes will ameliorate diarrheal symptoms and improve conditions associated with inflammatory bowel disorders. |