First Author | Lee SH | Year | 2006 |
Journal | J Neurophysiol | Volume | 96 |
Issue | 2 | Pages | 858-71 |
PubMed ID | 16641377 | Mgi Jnum | J:135747 |
Mgi Id | MGI:3794395 | Doi | 10.1152/jn.01115.2005 |
Citation | Lee SH, et al. (2006) Excitatory actions of vasoactive intestinal peptide on mouse thalamocortical neurons are mediated by VPAC2 receptors. J Neurophysiol 96(2):858-71 |
abstractText | Thalamic nuclei can generate intrathalamic rhythms similar to those observed at various arousal levels and pathophysiological conditions such as absence epilepsy. These rhythmic activities can be altered by a variety of neuromodulators that arise from brain stem regions as well as those that are intrinsic to the thalamic circuitry. Vasoactive intestinal peptide (VIP) is a neuropeptide localized within the thalamus and strongly attenuates intrathalamic rhythms via an unidentified receptor subtype. We have used transgenic mice lacking a specific VIP receptor, VPAC(2), to identify its role in VIP-mediated actions in the thalamus. VIP strongly attenuated both the slow, 2-4 Hz and spindle-like 5-8 Hz rhythmic activities in slices from wild-type mice (VPAC(2)(+/+)) but not in slices from VPAC(2) receptor knock-out mice (VPAC(2)(-/-)), which suggests a major role of VPAC(2) receptors in the antioscillatory actions of VIP. Intracellular recordings revealed that VIP depolarized all relay neurons tested from VPAC(2)(+/+) mice. In VPAC(2)(-/-) mice, however, VIP produced no membrane depolarization in 80% of neurons tested. In relay neurons from VPAC(2)+/+ mice, VIP enhanced the hyperpolarization-activated mixed cation current, I(h), via cyclic AMP activity, but VIP did not alter I(h) in VPAC(2)-/- mice. In VPAC(2)-/- mice, pituitary adenylate cyclase activating-polypeptide (PACAP) depolarized the majority of relay neurons via I(h) enhancement presumably via PAC(1) receptor activation. Our findings suggest that VIP-mediated actions are predominantly mediated by VPAC(2) receptors, but PAC(1) receptors may play a minor role. The excitatory actions of VIP and PACAP suggest these peptides may not only regulate intrathalamic rhythmic activities, but also may influence information transfer through thalamocortical circuits. |