|  Help  |  About  |  Contact Us

Publication : Osteoblast-derived FGF9 regulates skeletal homeostasis.

First Author  Wang L Year  2017
Journal  Bone Volume  98
Pages  18-25 PubMed ID  28189801
Mgi Jnum  J:254809 Mgi Id  MGI:6112947
Doi  10.1016/j.bone.2016.12.005 Citation  Wang L, et al. (2017) Osteoblast-derived FGF9 regulates skeletal homeostasis. Bone 98:18-25
abstractText  FGF9 has complex and important roles in skeletal development and repair. We have previously observed that Fgf9 expression in osteoblasts (OBs) is regulated by G protein signaling and therefore the present study was done to determine whether OB-derived FGF9 was important in skeletal homeostasis. To directly test this idea, we deleted functional expression of Fgf9 gene in OBs using a 2.3kb collagen type I promoter-driven Cre transgenic mouse line (Fgf9(OB-/-)). Both Fgf9 knockout (Fgf9(OB-/-)) and the Fgf9 floxed littermates (Fgf9(fl/fl)) mice were fully backcrossed and maintained in an FBV/N background. Three month old Fgf9(OB-/-) mice displayed a significant decrease in cancellous bone and bone formation in the distal femur and a significant decrease in cortical thickness at the TFJ. Strikingly, female Fgf9(OB-/-) mice did not display altered bone mass. Continuous treatment of mouse BMSCs with exogenous FGF9 inhibited mouse BMSC mineralization while acute treatment increased the proliferation of progenitors, an effect requiring the activation of Akt1. Our results suggest that mature OBs are an important source of FGF9, positively regulating skeletal homeostasis in male mice. Osteoblast-derived FGF9 may serve a paracrine role to maintain the osteogenic progenitor cell population through activation of Akt signaling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression